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ROBUST VARIABLE SELECTION METHOD BASED ON 

HUBERIZED LARS-LASSO REGRESSION  

 

 
Abstract. The combination of the least absolute deviation (LAD) and the 

least absolute shrinkage and selection operator (LASSO) (LAD-LASSO regression 
method) is a popular method to simultaneously perform robust parameter 

estimation and variable selection. The weighted version of LAD-LASSO is put 

forward to overcome the problem of LAD-LASSO which is only resistant to outliers 

in the response variable, but not resistant to outlying observations in the predictor 
variables (high leverage points (hlps)).Moreover, sometimes these methods lead to 

overfitting problems or increasing false selection rates with smaller changes in a 

data. The stability selection methods such as multi-split procedure is proposed to 
overcome these problems. Unfortunately, this procedure is not resistant to outliers. 

In this study, we developed a new variable selection method which is called Multi 

Split Huberized LARS-Lasso (MHLL) by combining the Huberized LARS-Lasso 

(HLL) and multi-split procedure, under certain conditions to improve stability and 
predictions. The performance of the proposed MHLL method is assessed 

extensively by real examples and simulation study. The results indicate that the 

MHLL is more efficient and reliable than the other two methods. 
Keywords: Huberized Lasso, LAD-Lasso, WLAD-Lasso, Outliers, adjusted 

p-value.  

JEL Classification: C51, C52, C55 
 

1. Introduction 

The informatics revolution in the last century has led to huge developments in data 

collection technologies. Researchers in a wide variety of scientific areas have 
employed these technologies to aggregate large scale of data. Sometimes, one 

obtains a set of data with many predictor variables but do not know which one to 

use. By including unimportant explanatory variables may produce less accurate 
predictions and reduce the efficiency of the resulting estimation. On the contrary, 

deleting an important predictor may result biased estimates and inaccurate 

prediction. In this connection, a variable selection technique is very crucial 
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technique to be employed to choose the important variables to be included in a 
model. The aim of variable selection includes accurate prediction, interpretable 

models, stability and avoiding estimation biased. There are many commonly used 

variables selection methods in literatures such as all possible subsets, stepwise 
regression, forward selection and backward elimination. All of these traditional 

methods are not reliable as they fall short in one or more of these criteria due to 

using the Ordinary Least Squares (OLS) method which is easily affected by 

outliers. Moreover, those methods are difficult to apply to high dimensional data in 

which the number of candidate predictor variables (𝑝) is larger than the number of 

observations (𝑛).  
Tibshirani (1996), proposed least absolute shrinkage and selection operator (Lasso) 
to tackle the traditional variable selection problem. The Lasso is a popular 

technique for simultaneous estimation and variable selection where these two 

procedures are combined in a single minimization problem.  Nonetheless, the 

Lasso is not resistant to outliers because it is a special case of the penalized of the 

loss function of the OLS subject to L1 penalty function. To remedy this problem, 

the Lad-Lasso regression method is developed by combining the Least Absolute 

Deviation (Lad) and the Lasso methods (seeXu,2005; Wang and Leng, 2007). 
      It is noted that the Lad-Lasso only resistant to outliers in the response variable. 

Weighted version of the Lad-Lasso method is then developed by combining the 

Wlad regression criterion and the adaptive Lasso penalty function which is 
proposed by Zou (2006), to make the resultant estimator resistant to hlps. Lacroix 

(2011) proposed a new estimator by combining Huber’s criterion and adaptive 

lasso penalty whereby this estimator is robust to heavy tailed errors or outliers in 

the response. The model that selected by this manner should be characterized by 
accuracy, stability, and interpretability. The respectable efforts have been paid in 

the statistical literature to develop the approach of penalizing the sum of residual 

squares. These efforts focus on two directions, first accelerating the stability and 

the prediction with L1 penalty, such as boosting(Hastie et al., 2001) andforward 

stage wise regression (FreundandSchapire,1997). The other direction concentrated 

on suggesting new penalty functions, for instance, SCAD 

(FreundandSchapire,1997), adaptive LASSO(Zou,2006), relaxed 
LASSO(Meinshausen,2007)and the Dantzigselector (Candesand Tao,2005b). 

Tibshirani (1996) used linear programming to find the optimal solution path for the 

lasso. The Least Angle Regression (LARS) of Efronet al. (2004) is a popular 
method for computing the lasso optimal solution path. Unfortunately, LARS has 

the ability to rank the most important variables but they do not need to be 

significant (Khanet al., 2007;Brink-Jensenand Thorn,2014). 
      According to Tibshiraniet al. (2012), Lasso does not have a unique minimum 

when the rank of covariates matrix is less than the number of covariates due to 

selecting some of covariates from a discrete probability distribution.  Drastic 

changes may occur in lasso solution path as a result of small changes that may 
occur in the original data.  Consequently, different lasso results are obtained when 
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subsamples are repeatedly drawn from the original data.  To overcome the 
instability of lasso solution path, Meinshausenet al. (2009) proposed resampling by 

a single split procedure (Wassermanand Roeder,2009), which relies on 

subsampling technique of Politis and Romano (1994). This approach is capable of 
making asymptotically correct inference around Lasso coefficients and obtaining 

the optimal solution path based on the novel adjusted p-values.  

        Unfortunately, outliers may occur as a result of data collection from different 

subpopulations (Heterogeneity problem) and then the characterize approximate 
distribution of Lasso estimator becomes more complex (Wuand Ma,2014). 

Moreover, the random subsamples procedure gives each observation in a data set 

the same probability of being chosen to be in the specific subsample, even this 
observation is identified as outlier. One solution considered to overcome the 

instability is to propose combining random Multi-split procedure with Huberized 

LARS- Lasso (HLL) and call it Multi Split Huberized LARS Lasso denoted as 

𝑀ℋ𝐿𝐿. 
       Hence in this paper, we propose a new estimator that we call 𝑀ℋ𝐿𝐿. The rest 

of the paper is structured as follows. Section 2 & Section 3 present the ℋ𝐿𝐿 

regression and the proposed procedure, respectively. Section 4 illustrates the 
performance of the proposed method using simulation study.Real data sets are 

illustrated in section 5 and section 6. The conclusion of this paper is presented in 

Section 7.  

  2. The Huberized LARS-LASSO (HLL) 

      The robust regression parameter estimates are obtained by minimizing 

a Huber loss function ℋδ that can be expressed as  

min
β
∑ ℋδ (

ri

s
)n

i=1                                                                                      (1) 

where s = 1.348 median|ri −median(ri)|,  ri = yi − xi
′β and ℋδ is a symmetric 

function with a unique minimum at zero, 

ℋδ(t)i = {
ti
2/2, if |ti| ≤ δ

δ |ti| − δ
2/2, if |ti| > 𝛿

                                        (2)   

where ti = ri s.⁄  

        Taking partial derivative with respect to 𝛽 and setting them equal to 

zero, producing a system of normal equations that can solve this minimization 

problem. Thus, by letting ψ(t) as the derivative of 𝜌, we would get 

 ∑ ψ(t)n
i=1 xi = 0, 

where 

                             ψ(t)i = {
ti, if |ti| ≤ δ

 δ sign(ti), if |ti| > 𝛿
.                                                (3) 

Huber (1981)demonstrated that the asymptotic efficiency of 0.95 at normal 

errors can be achieve when  δ = 1.345. Rosset and Zhu(2007) combined Huber 

function with ℓ1 penalty to propose huberized Lasso algorithm which is typically 

tuned by λδ to achieve optimal prediction accuracy. They employed Least angle 

regression algorithm (Efronet al., 2004), as a piecewise linear solution path of the 
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Huberized Lasso to improve the efficiency of the estimates.  Consider the 
Huberized Lasso regression solution as follows, 

β̂(λδ) = ∑ℋδ(t) + λδ ∑ |β(λδ)j|
P
j=1                                           (4) 

by taking the derivative of β̂(λδ), 
 ∂β̂(λδ)

∂λδ
= −[∇2∑ℋδ(t) + ∇

2λδ ∑ |βj|
P
j=1 ]

−1
∇λδ ∑ |β(λδ)j|

P
j=1            (5) 

and then a piecewise constant vector can be computed from the following function, 
∂β̂(λδ)

∂λδ
‖
∂β̂(λδ)

∂λδ
‖⁄ , 

therefore λδ is a piecewise linear too. The β̂(λδ) can have nonzero only when the 

generalize absolute correlation |∇(∑ℋδ(t))j| = λδ which involves 

sgn (∇(∑ℋδ(t))j) = −sgn(β̂(λδ)j) 

    The optimal choice of λδ  relies on the cross validation procedure to 

generate the solution paths of  β̂(λ) = β̂(λδ) − (λ − λδ)γδ .  The procedure starts 

from one λ1 and the solution is moving in a linear direction of LARS steps 

γδwhich is determined by the equiangular path until settle on the optimizing value 

λδ . This procedure involves a very cheap computation step and the β̂(λ) solution is 

a piecewise linear and monotonically decreasing in λδ.  

3. Random Multi-split Huberized LARS-Lasso(𝐌𝓗𝐋𝐋) 
     To improve the performance of the single split random selection 

technique, a stability selection or random multi-split procedure is proposed. This 

procedure repeatedly split randomly the data into two subsamples with equal size 

of n/2 for a certain number of times (at least 50 times) whereby the dimensional 

reduction of  Huberized LARS- Lasso (ℋLL) and the  MM-estimatorYohai(1987) 

are applied to the first and the second subsamples, respectively and a set of p-

values of regression coefficients are recorded.    

     This procedure combines all sets of p-values and only considers those 
variables with significant p values to be included in the final model.  The details 

explanation of multi split procedures can be found in some literatures (Buhlmannet 

al., 2013;Zhang and Zhang,2014;Lockhartet al., 2014; Van de Geer et al., 
2014;Javanmardand Montanari,2013;Uraibi,2019;Uraibiet al., 2017a;Uraibiet al, 

2015;Uraibiet al., 2017). Consider linear regression equation,  

                                     Y = Xβ + ε,                                                     (6) 

where Y is an (n × 1)response vector, X is (n × p)fixed design matrix of 

independent variables, β is an (p × 1) regression parameters vector and ε is an 
(n × 1) random errors vector with iid.N(0, σ2). 

Let B is the total number of times of the random splitting of original data 

such that  b = 1,… , B. The Multi-split algorithm of (Yohai,1987) is summarized as 

follows: 

Step 1. For b = 1,… , B 

1. Let the full dataset denoted as  DFull = [YFull, XFull] be randomly splits into 

two disjoint groups of equal size (n/2)where the first and the second 
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groups are denoted as Din
(b)
= (Yin, Xin) and Dout

(b)
= (Yout, Xout) , 

respectively.  

2. Identify leverage points and outliers individually for Din
(b)

 and Dout
(b)

,as 

follows 

 a. Identify the residuals outliers by using robust three sigma rule, 

z =
ε̂ − Med(ε̂)

MAD(ε̂)
 

where ε̂ is the residuals vector of Least Median of Squares (LMS), and it is 

considered an outlier ifz > 2.5. 

b. The Robust Mahalanobis Distance (RMD) based on robust location and 

scatter matrix (such as MCD, MVE) is used with fixed design matrix of 

independent variables X to identify leverage points.  Observations 

corresponding to the jth row with    RMDj > χ(0.975,p)
 2  is considered as 

leverage point. If the identified percentage of outliers or leverage points 

exceeds 50%, discards the whole subgroups and repeat step 1. 

3. Let S̃ℋ
(b)

 be the estimates of  𝛽(𝜆) of the set of active covariates based on 

Din
(b)

 subsample data such that  S̃ℋLL
(b)

= {j; β̂j
ℋLL ≠ 0} and N = S̃ℋLL

c(b)
=

{j; β̂j
ℋLL = 0} (where c refers to complement) is the set of  inactive 

covariates. �̂�(𝜆)is computed using ℋ𝐿𝐿(Huberized LARS-Lasso). 

4. Employ the MM-estimator (Yohai,1987) to estimate the parameters of the 

set of active predictors in S̃ℋLL
(b)

 for the Dout
(b)

 subsample data and calculate 

the corresponding p-values as follows,  

 

P̃MMj
(b)

= {
P̃MMj
(b)

if  j ∈ S̃ℋLL
(b)

1 if j ∉ S̃ℋLL
(b)

                                        (7) 

 

and then without aggregated, adjusted P̃MMj
(b)

 values as 

 

P̂MMj
(b)

= min (P̃MMj
(b) |S̃ℋLL

(b) | , 1) , j = 1,2, … , p                                         (8) 

 

Step2.The B vectors of  P̂MMj
(b)

 for each predictor Xj are obtained from Step1. For 

any fixed  γ ∈ (0,1) with lower bound at least equals to 0.05, (Meinshausenet 
al.,2009), defined Qj () in Equation 9 as follows,  

 

Qj(γ) = min {1, qγ ({
P̂MMj
(b)

γ
; b = 1,… , B})}                                         (9) 

where qγ(. ) is the empirical quantile function. 
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The choice of  γ entails additional correction to control the Family-wise Error 

(FWER) rate at level α through the correction factor  1 − log (γmin) with upper 

bound equals 4. Subsequently, the robust adjusted p-values is given by,    

 

Pj
rob = min {1,1 − log(γmin)

inf
γ ∈ (γmin, 1)

 Qj(γ)}                                            (10) 

 

The final model will include only those variables that possess Pj
rob which is not 

equal to one. 

4.  Simulation Study  

     In this section, we report a simulation study that is designed to 

investigate the performance of our proposed MHLL compared to LAD-Lasso and 
WLAD-Lasso.  Here, we consider three different simulation scenarios.  

Simulation1: The first simulation considers multiple linear regression with sample 

of size 50 (n = 50) and 25 covariates (p = 25)   where each of the covariate is 

drawn from joint Gaussian marginal distribution with correlation structure ρ = 0.5. 

The true regression parameters β is set to be   β = (1,2,3,4,5⏟    
5
, 0,0,0,0,0⏟    

20
).  The 

distribution of random errors e is generated from the following contamination 

model, 

F(e) = [(1 − ε)N(0,1) + ε H(0,2)]  × σ 

where ε is the contamination ratio, σ is a signal to noise which is chosen to be 3, N 

is standard normal distribution and  H is Cauchy distribution to create heavy –tailed 

distribution. The variables are contaminated by certain ratio (ε = {0.05, 0.10, 0.15 

and 0.20}  of high leverage points. The high leverage points are created by 
replacing randomly some original observations with large values equals to 15.  

Subsequently, the respond variables are computed as follows,  

y(50×1)  = X(50×25) × (1,2,3,4,5⏟    
5
, 0,0,0,0,0⏟    

20
)
t

+ F(e)(50×1) 

Simulation 2: The second simulation is similar to the first simulation process, 

except for different values of p and n  ( p = 50 ,n = 150) and the respond 

variables are calculated as follows,  

y(100×1)  = X(150×50) × (5,0,0,0,8⏟    
5
, 0,1.5,0,0,3⏟      

5
, 0,5,0,0,0⏟    

5
, 0, … ,0⏟  

35
)
t

+ F(e)(150×1) 

Simulation 3: The third simulation scenario is similar to the second simulation 

(p = 50)  with a slight change where n is increased to 200 and β =

(4,0,0,0,3.5,0⏟        
6
, 0,0,2.5,0,0⏟      

5
0,5,0,0,0,4.5⏟        

6
, 0, … ,0⏟  

33
).  Afterwards the dependent 

variables are computed as follows  

y(500×1)  = X(500×50) × (β)
t + F(e)(500×1) 

The MℋLL, LAD-Lasso and WLAD-Lasso were then applied to the simulated 
data.  In each simulation runs, there were 5000 replications.  Four criteria are 
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considered to evaluate the performances of the three methods, namely: (1) the 

percentage of zero coefficients (Zero. coef), (2) the percentage of non-zero true 

coefficients (N. Zero. coef), (3) the average of mean squares of errors (mse̅̅ ̅̅ ̅) and (4) 

the Median of mean squares of errors  Med(mse). A good method is the one that 

possesses the lowest percentage of Zero. coef and the highest percentage of 

N. Zero. coef which is reasonably closed to 0% and the 100%, respectively, and 

having the least (mse̅̅ ̅̅ ̅) and Med(mse)values. 

      Several interesting points appear from the results of Table 1. The 
results clearly show the merit of MHLL.  It can be observed from Table 1 that  the 

percentage of Zero. coef and N. Zero. coef of the  MℋLL are fairly closed to 0% 

and 100%, respectively and having the smallest values of (mse̅̅ ̅̅ ̅) and Med(mse), 
followed by, WLAD-Lasso and LAD-Lasso. For example, for simulation 3, with 

5% contamination, the MℋLL successfully select 100% 0fN. Zero. coef and 0%  

zero. coef , while WLAD-Lasso suffers from underfitting problems ( it selects 23% 

of N. Zero. coef and 77%  Zero. coef ) over 5000 replications with mse̅̅ ̅̅ ̅ and 

Med(mse) greater than their counterparts of  MℋLL.  The results are consistent for 

all percentages of contaminations. This indicates that the performance of MℋLL is 

more efficient than the other two methods. 
 

Table 1: The percentage of Zero and non-zero coefficients, Average of MSE 

and median of MSE for three scenarios of Simulations 
 Simulation 1 Simulation 2 Simulation 3 

ε Model L
A

D
-L

asso
 

W
L

A
D

-L
asso

 

M
ℋ
L
L

 

L
A

D
-L

asso
 

W
L

A
D

-L
asso

 

M
ℋ
L
L

 

L
A

D
-L

asso
 

W
L

A
D

-L
asso

 

M
ℋ
L
L

 

 
5% 

 

Z. Coef 0.44 0.40 0.16 0.78 0.75 0.00 0.78 0.77 0.00 

NZ. Coef 0.56 0.60 0.84 0.22 0.25 1.00 0.22 0.23 1.00 

mse̅̅ ̅̅ ̅ 78.0
3 

76.02 3.80 143.
92 

11.4
5 

10.4
2 

1686.
1 

1551.3 1505.4 

Med(mse) 
 

18.4
0 

18.11 3.08 148.
15 

2.87 2.62 174.2
8 

4.90 4.74 

 
10

% 

Z. Coef 0.44 0.43 0.15 0.78 0.77 0.00 0.78 0.78 0.00 

NZ. Coef 0.56 0.57 0.85 0.22 0.23 1.00 0.22 0.22 1.00 

mse̅̅ ̅̅ ̅ 997.
52 

730.96 6.68 184.
92 

165.
45 

15.4
2 

310.0
5 

147.28 140.95 

Med(mse) 21.3
3 

21.31 5.54 184.
20 

10.4
6 

8.88 182.4
9 

11.40 10.92 

 
15
% 

Z. Coef 0.45 0.48 0.17 0.78 0.79 0.00 0.78 0.76 0.00 

NZ. Coef 0.55 0.52 0.83 0.22 0.21 1.00 0.22 0.24 1.00 



 

 
 

 

 

 
Hassan Uraibi , Habshah Midi 

__________________________________________________________ 

152 

DOI: 10.24818/18423264/54.3.20.09 

mse̅̅ ̅̅ ̅ 334
9.63 

2817.9
7 

6.72 287.
20 

178.
82 

14.6
0 

37204
8 

365874.
6 

348725 

Med(mse) 23.0
1 

22.33 6.02 144.
18 

7.72 7.16 182.0
9 

14.80 14.27 

 
20

% 

Z. Coef 0.44 0.52 0.19 0.78 0.81 0.01 0.41 0.55 0.00 

NZ. Coef 0.56 0.48 0.81 0.22 0.19 0.99 0.59 0.45 1.00 

mse̅̅ ̅̅ ̅ 246

9  

2255 7.75 516.

8 

205.

5 

485.

5 

31112

3 

299457 25013 

 Med(mse) 26.2
6 

25.19 6.87 171.
50 

20.2
7 

17.7
9 

180.1
2 

14.95 10.84 

 
 

5.  Modified Hawkins BraduKass Data 

In order to evaluate the performance of MℋLL, an artificial  data set constructed by 

Hawkins et al. [32,33] is used. This data set containing 75 observations of one 

response and three explanatory variables in which the first ten observations (cases 

1-10) are constructed as bad leverage points and (cases 11-14) as good leverage 

points. Since the positions of outliers of this data set are exactly known, it has been 
enormously employed by many researchers to demonstrate the robustness of robust 

regression techniques. The idea of Artificial data is taken from Arslan (2012) who 

modified the Hawkins data set. 
We modified the dimension of original data to have 120 covariates. The first three 

covariates are collected from the original dataset and the remaining covariates are 

generated from standard normal distribution. The new design matrix X is divided 

into two sub matrices X1 and X2 in which  X1  having the first 10 samples and X2 
involves the remaining 65 samples. Mathematically, this procedure can be written 

as follows, 

X = [
X1
X2
] , 

  where X1 = [x1 x2 … x120](10×120)  and  X2 = [x1 x2 … x120](65×120) 

To exclude the outliers from the first 10 samples and keeping only the bad leverage 

points, the response variable Y1  is computed as follows, 

Y1(10×1) = X1(10×120)β1.(120×1), 

where β1.(120×1) = (−1,−1,0, … ,0⏟        
120
)
t

 

On the other hand, the outliers are considered with the remaining 65 samples by 

using the following formula, 

Y2(65×1) = X2(65×120)β2.(120×1)+ ε(65×1), 

where,  β2.(120×1) = (2,2,0, … ,0⏟      
120
)
t

 

and  ε(65×1)  is distributed as Cauchy distribution. 
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Consequentially,Y(1×75) = [
Y1(10×1)
Y2(65×1)

]. 

The MℋLL method along with LAD-Lasso and WLAD-Lasso were then applied to 

the modified Hawkins dataset to identify the zero, non-zero coefficients and the 
false selection variable. The best method is the one that includes non-zero 

coefficients of x1 and x2 covariates and having the least false selection rate. It can 

be observed from Table 2 that LAD-Lasso selects 108 and 12 zeros and non-zeros 

coefficients, respectively. The 12 covariates with non-zero coefficients included 10 

false selection covariates. The WLAD-Lasso shows 111 covariates with zero 

coefficients, 9 covariates with non-zero coefficients are selected with 0.058 false 

selection rate. It is very interesting to observe that our proposed MℋLL chooses 

three potential covariates with 117 non-zero coefficients, having the least 

probability of false selection (0.008). 

 

Table 2: the number of Zero and Non-zero coefficients and number and 

percentage of False selection of covariates for four methods with modified 

Data. 

 LAD-Lasso WLAD-Lasso MℋLL 

Z. Coef 108 111 117 

NZ. Coef 12 9 3 

False   selection 
variable 

10 
 (0.083) 

7 
(0.058) 

1 
(0.008) 

 
 

6. Hand Grip Strength data  

      Our second example is the Malaysian Hand Grip Data. Hand grip strength is a 
crucial measure employed to evaluate hand disorders and injuries and to monitor 

the progression of recovery and so on [35]. The original data of right hand grip 

strength is obtained from [36] where in our study we consider 304 (196 men and 

108 women) healthy volunteers of  staff, medical students and visitors of 

University of Malaya Medical Centre between January and April. It is noted that 

grip strength is influenced by a number of factors such as Age, Height, Weight, 
Right Upper arm circumference, and BMI of each subject. In this study we wish to 

investigate which of the five independent variables should be included in the final 

model for the prediction of grip strength of adult Malaysian. As such, we will apply 
our MHLL variable selection method to identify a few ‘best’ subsets X that will 

increase model predictive ability. Here, we separately analyses the data by gender. 
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6.1 Males Hand Grip Strength data 
Firstly, we want to investigate whether the data has outliers (outlying observations 

in Y direction), leverage points (outlying observations in X direction), and 

influential observations. 

Figure 1. Cook's Distance with 0.02 as threshold for Males Hand Grip 

Strength data  

     Diagnostic methods namely the hat matrix (with threshold equals 0.061), the R-
student (with cut-off point equals 2.5) and Cook’s distance (with threshold equals  

0.02) are employed for the identification of outliers, leverage points and influential 

observations. It can be observed from Figure 1 that 16 influential observation  are 

 detected while Figure 2 shows that this data has 19 leverage points and 4 outliers. 
Moreover, the plot of correlation matrix of the five covariates in Figure 3 indicates 

 that Weight and right Upper arm circumference, are strongly correlated with BMI. 

  

Figure 2. Identified leverage point and outliers in Males Hand Grip Strength data 
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Table 3 present the results of the three variable selection methods. It is 
obvious that LAD-Lasso and WLAD-Lasso select 5 non-zero coefficients with 

higher RMSE values, while  MℋLL select 2 non-zero coefficients (Height and right 

Upper arm circumference).  The values of the Root of Mean Squares Error (RMSE) 

of MℋLLis smaller than the LAD-Lasso and WLAD-lasso. Hence for this data set, 

the MℋLLis more reliable and selects Height and right Upper arm circumference to 

be included in the model. 

 
 

 

Figure 3.The correlation matrix of five covariates (Age, Height, Weight, 

Upper arm circumference right, and BMI) of Males Hand Grip Strength data 

 

 

Table 3: The number of Zero and Non-zero coefficients and the root of mean 

of mean squares errors for four methods of Male Hand Grip Strength Data 

 LAD-Lasso WLAD-Lasso MℋLL 

Z. Coef 0 0 3 

NZ. Coef 5 5 2 

RMSE 10.87 9.60 9.38 

 

6.2 Females Hand Grip Strength data 

    We employed the same diagnostic procedures as used in the previous 

data to the female hand grip data.  Figure 4 shows that the women handgrip data 

has seven influential observations.  

This data set also has 11 leverage points and 4 outliers as shown in Figure 5. 
 

 

 

 
 

 

 



 

 
 

 

 

 
Hassan Uraibi , Habshah Midi 

__________________________________________________________ 

156 

DOI: 10.24818/18423264/54.3.20.09 

1

13

20

21

32

58

68
75

77

79

81

82

93

96

102

Threshold: 0.111

-6

-3

0

3

6

0.0 0.1 0.2 0.3

Leverage

RS
tud

en
t Observation

normal

leverage

outlier

Outlier and Leverage Diagnostics for y.M

  

Figure 4. The results of Cook's Distance for Females Hand Grip Strength data 
 

   Similar to the Male Hand Grip Strength data, the Weight and the right 

Upper arm circumference of the women hand grip data, are strongly correlated 

with BMI as shown in Figure 6. 

 

 

Figure 5.  identified leverage point and outliers in Females Hand Grip 

Strength data 

 

Table 4: the number of Zero and Non-zero coefficients and the root of mean of 

squares errors for four methods of Female Hand Grip Strength Data 

 

 LAD-Lasso WLAD-Lasso MℋLL 

Z. Coef 1 0 3 

NZ. Coef 4 5 2 

RMSE 9.48 8.68 7.85 
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      The results of the three variable selection methods are exhibited in 
Table 4. The results signify that the LAD-Lasso method excluded only one 

covariate (Age), and the WLAD-Lasso included all covariates. It is interesting to 

see that the MℋLL method selects Height and right Upper arm circumference with 
non-zero coefficients and having the least value of RMSE. The results show that 

the performance of MℋLL is more efficient and more reliable than the other 

methods considered in this study.  

 

 

 

Figure 6:  The correlation matrix of five covariates (Age, Height, Weight, 

Upper arm circumference right, and BMI) of Females Hand Grip Strength 

data 

 

 

7. Conclusions 

 

The main purpose of this paper was to develop a reliable alternative approach for 
improving lasso solution path. In this study, we proposed a multi split Huberized 

Lars-Lasso solution path by combining Huberized Lars-Lasso with multiple split 

procedure whereby overfitting problem is controlled using adjusted p-value. We 

have compared the MℋLL with two other estimators namely the LAD-Lasso and 
WLAD-Lasso. The LAD-Lasso is not reliable at all and the WLAD-Lasso is not 

any better either.  The simulation experiments and empirical studies signify that the 

MℋLL offers a remarkable improvement over the LAD-Lasso and WLAD-Lasso.   

        The MℋLL can significantly select the potential variables in the final model 

with the least value of RMSE and least probability of selecting false variables.  The 

LAD-Lasso and WLAD-Lasso are not capable of selecting the correct variables in 

the final model having considerably large probability of false variable selection and 

large RMSE.  Thus, we can contemplate that our proposed MℋLL technique as a 

sound variable selection method and highly suggest employing this method 

particularly when outliers and high leverage points are present in a data.  
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